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The role of internal phase boundaries on the stability of two-phase binary 
crystallites is examined theoretically. It is found that for particles of size 200 A or 
less, the critical temperature can be lowered drastically. In particular, an equilibrated 
alloy particle could be made to remain a single phase at temperatures of interest 
in catalysis despite the prediction of immiscibility from the bulk-phase diagram. 
9 comparison of experimental results using codeposited alloy films with this predic- 
tion from the simple theoretical model is favorable. 

The use of binary alloys for investiga- 
tions into the so-called electronic factor in 
catalysis by metals has been relatively com- 
mon (1). A general problem in the in- 
terpretation of these studies has been the 
difficulty in obtaining an unambiguous char- 
acterization of the alloy catalyst surface 
composition. Often, this ambiguity has 
been due to the (possible) simultaneous 
existence of two phases, i.e., the presence 
of a miscibility gap in the phase diagram 
of these binary alloys at the temperatures 
and compositions of interest. 

For example, some recent investigations 
by Sachtler et al. (24) and Cadenhead 
et al. (6, 7) have exploited the use of 
chemisorption and physical adsorption 
studies on copper-nickel alloys. X-Ray dif- 
fraction has shown that the evaporated 
alloy films of Sachtler et al. (2-5) were 
generally comprised of two different phases 
after equilibration at 2OO”C, indicating a 
miscibility gap from about 95 to 20% 
nickel. Similarly, Cadenhead et al. (6, 7) 
observed that the surface composition of 
granular alloys appeared to differ widely 
from the average bulk compositions over 
the greater part of the composition range. 
While these two studies and others have 
provided some provocative thoughts about 
the nature of copper-nickel surfaces in 
particular, the results derived from study- 

ing an equilibrated binary system which 
is immiscible at nearly all compositions 
(at moderate temperatures) cannot con- 
tribute as greatly as initially hoped to the 
elucidation of the electronic factor. 

The present paper examines the potential 
role of surface and interfacial free energies 
of binary alloy crystallites to determine the 
degree of influence which this surface 
property may have on the equilibrium phase 
diagram of the crystallite. In so doing, the 
crystallite is viewed as a closed system to 
mass transfer of either alloy component. 

The creation of a two-phase crystallite 
from a one-phase (presumably unstable) 
crystallite is accomplished by decreasing 
the total free energy per mole of the sam- 
ple and, neglecting any volume changes, 
increasing the total surface since a new 
interface between the resulting phases is 
created (Fig. 2a, b). For such a transition, 
the ratio of the surface (destabilizing) to 
volume (stabilizing) free-energy changes 
should vary with the inverse of the particle 
radius. For particles with average compo- 
sition lying within the miscibility gap of 
the bulk alloy, there will be a particle ra- 
dius such that any smaller one-phase par- 
ticles will experience an increase in total 
free energy per unit volume upon becom- 
ing two-phase and will, therefore, prefer to 
remain as single-phase systems. 
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If at a particular temperature useful in 
catalytic studies (O-JOO”C), the range of 
such particle sizes lies in a physically 
reasonable interval from the point of view 
of alloy sample preparation, say 7 100 A, 
it would appear possible to prepare a com- 
pletely homogeneous series of alloy crystal- 
lites over the entire composition range of 
that binary system, despite the fact that 
the bulk phase diagram under such con- 
ditions exhibits a wide miscibility gap. 
Contrary to the conclusion of Bond (1) 
that “the ideal (alloy) system for our pur- 
poses does not exist,” the potential is that 
any binary system could be made “ideal.” 

MODEL SYSTEM 

For the sake of a simple calculational 
system which contains the central features 
of interest, we consider the alloy crystallite 
shown in Fig. 2a and b. Subscripts 0, 1, 
and 2 refer to the initial homogeneous crys- 
tallite, and the two final phases into which 
the original phase may separate. The phase 
diagram of binary solid systems are often 
shown in terms of convenient temperature 
vs composition (5” - X) diagrams (e.g., 
Fig. 1). The model chosen is that of a regu- 
lar solution for all three possible phases: 
The heat of mixing is determined by a 

T 
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FIG. 1. Phase diagram of a binary system with 
a miscibility gap in the solid region. 

single interaction parameter, Q, but the 
entropy of mixing has the same form as for 
an ideal solution (9). For any given phase, 
then, the enthalpy of mixing per mole and 
entropy of mixing per mole are given by 
Eqs. (1) and (2) : 

hi = fkzi(l - Xi), (1) 

Si = -R(zilnzi + (1 - Xi) In (1 - Xi)). 
(2) 

We also neglect any volume changes due 
to mixing, and assume t,hat the molar vol- 
umes of component A and B are equal. 
v* = vg = v. 

If the crystallite in Fig. 2a separates into 
the two-phase system in Fig. 2b, the result- 
ing free-energy change is composed of two 
parts: a volume term and a surface term. 
Taking y as the fraction of the original 
volume (or moles) becoming phase 1, the 
volume contribution to the free-energy 
change per unit volume is 

4, = ygl + (1 - ykh - sot (3) 

where gl, g2, and go are the volume free 
energies of mixing of the three phases (re- 
ferred to the pure components). The sur- 
face contribution to the free-energy change 
is the contribution due to the phase inter- 
face in Fig. 2b (assuming that the surface 
tension is not a function of composition). 
This term is simply the surface tension of 
the l-2 interface times its area divided by 
the total number of moles in the crystallite: 

Ag8 = u. A/N, (4) 

where v = surface tension; A = interfacial 
area ; and N = total moles in crystallite. 
The total moles, iv, is simply ++rr3/v, 
where v is the molar volume, and T is the 
crystallite radius. The interface is assumed 

(a) (b) 

FIG. 2. Schematic diagram of phase transition 
from phase 0 to phases 1 and 2 for a spherical 
crystallite. 
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to be planar (this approximation is dis- Equating (8) and (6) yields a cubic 
cussed later), and is thus a circle of equation for z, the dimensionless height: 
radius r’. 

Since the free energy of mixing for any 
given phase is gmix = &ix - TQ~, Eqs. zy3 - 2) - 4 ;s = 0. 

( > 
(9) 

(1) and (2) combined with Eqs. (3) and 
(4) yield the total free-energy change per The root of Eq. (9) lying between 0 
mole, Eq. (5) : and 1 is given by 

Ag = 
= 
= 
= 

4, + Ags 
X.71 + (1 - Y)Ys - go + AGIN 

[yh + (1 - yh - ho] - T[yS, + (1 - y)S:! - So + Au/h’ 
~ka(l - Xl) + (1 - Y)Xz(l - x2) - x0(1 - x0)1 
- T[y(x, In x1 + (1 - x1) In (1 - x1)) + (1 - y)(x* In x2 

+ (1 - x2) In (1 - x2)) - zolnxo - (1 - 20) In (1 - x0); 

+ ; uv(r’)2/r3 (5) 

A component balance for component A, 
represented by xi for each phase, yields an 
expression for y in terms of the initial and 
final compositions for the three phases. 

x0 - x2 
Y= -. 

x1 - x2 

Next, the radius of the phase interface 
is also expressed in terms of the three 
compositions x0, x1, and x2. The volume of 
the lesser segment in Fig. 2b is given by 

(VOI)l = 5 h3(3r - h), (7) 

where h is height of the spherical segment 
(h < T), and the volume fraction is thus 

y=;(y(3-9=;(3-r), (8) 

8 2?r 
z=cos ---, ( > 3 3 (10) 

where 8 = arc cos (1 - 2y) ; and y 7 l/z. 
(The problem is symmetric about y = 1/.) 

Since (r’)2=rz- (7+-/2)2=h(2r-Iz), 
the term I-‘/T is given by 

and the surface contribution to the free- 
energy change is the expression in Eq. (11). 

Substituting Eqs. (6) and (11) into Eq. 
(5) results in the working equation for 
the free-energy change of the regular solu- 
tion crystallite on going from Fig. 2a to 
Fig. 2b. 

Ag = #=)x1(' -xl) + (:=)x2(1 -x2) - .ro(l - :eo)] 

- T[(S) 
(zllnxl + (1 - x1) ln (1 - x1)) 

+ 
( ) 

s (x2 In x2 + (1 - x2) In (1 - x2)) 

- x,, !n To - (1 - To) In (1 - X0) 1 
+ ; $$a - z), (12) 

where z=h/r; and O<z<l. where z = z (x0, x1, x,) 



When Ag is less than zero, the phase tran- 
sition shown in Fig. 2 is favored, and the 
two-phase crystallite is the phase of low- 
est free energy. If Ag is positive, the single- 
phase crystallite is most stable. Since the 
interfacial boundary contributes a positive 
term to the free-energy change per unit 
volume which is inversely proportional to 
the particle radius, for any value of T, x0, 
x1, and .xr (and 0 and v), there is some 
value of r for which all alloy particles of 
radius r or less will prefer to be a single 
phase which, in the case of this simple 
model, will be homogeneous. 

The curve in the phase diagram of 
Fig. 1 which separates the region of two 
solid phases from the single-phase region 
is the curve defined by Eq. (12) when the 
free-energy change is zero. This curve is 
only a function of initial (or average) 
composition and thermodynamic property 
n for bulk samples of regular solutions 
(radius equal to infinity). 

T,=, = T(f‘$ x0). (13) 

For a finite particle with a nonzero sur- 
face tension, the curve becomes a function 
of the surface tension, the radius, and the 
molar volume in addition to the original 
variables of fl and initial composition. 

T F#W = T(O, z,,, (T, r, v). (14) 

For the remaining discussion and presen- 
tation of results, the curve in Eq. (14) was 
calculated by a trial and error interation 
procedure in the following two-step algo- 
rithm: Choose 0 = 2R * 1500 (s 6 kcal/ 
mole), v = 10 A”. Given values for the 
variables x0, R, U, V, and an initial tem- 
perature (assumed). 

Search over all allowable values 
of x1 and x2 to find the pair of 
values (xlrn, xZnL) which maximize 
the free-energy change in Eq. (12). 
Set the left hand side of Eq. (12) 
equal to zero and solve for a new 
temperature using the values of 
x1,,, and xZm. from part (a). Re- 
turn to (a) to search for revised 
values of x1, and x2, above. 
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tory convergence is obtained. The final 
values of x1,% and x,, are the compositions 
of the two phases into which a phase of 
composition x0 will separate at the final 
temperature calculated in part (b) of the 
iterations. 

Since the location of the interface is un- 
known initially, the values of x1 and xr 
must be independently varied ; Eq. (6) 
guarantees that for any values of x1 and 
x3 such that 0 < x1 < x0 < xZ 5 1, the 
conservation requirement is satisfied. At 
equilibrium, x1 and x2 are not independent. 

It is illustrative to vary either surface 
tension or radius while holding the other 
constant. 

In order to determine what values of 
surface tension (or its numerical equiva- 
lent, surface free energy) are most relevant,, 
consider the literature data in Table 1. By 
far the smallest internal boundary free 
energy, AGb, is that found for a coherent 
twin boundary interface. This interface 
forms when the crystal structures of each 
phase are identical and the dividing bound- 
ary is a twinning (or mirror) plane. When 
the two-phase structures are oriented as 
twins but the boundary is not the twinning 
plane, a noncoherent twin interface results 
with higher interfacial free energies (440 

Crystal Int,erface 

Interfacial 
free energy 
(ergs/cm”) 

Copper Coherent twin 25(& 
Copper Noncoherent, twin 44oh 
Copper High angle 600c 
Iron Coherent, twin 187,’ 
Iron Noncoherent, twin 705d 
Iron (7) High angle X50e 
Iron (a, 4y0 Si) High angle 760’ 

a R. L. Fnllman, J. Appl. Phys. 22, 448 (1951). 
b R. L. Fullman, J. Appl. Phys. 22, 456 (1951). 
r N. A. Gjostein, and F. N. Rhines, Acta Mrt 7, 

319 (1959). 
d C. G. Dunn, F. W. I)aniels, and M. J. Bolt,on, 

J. Metals 2, 368 (1950). 
The iteration is repeated until satisfac- e L. H. Van Vlack, J. dfrta[s 3, 25 (1951). 
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ergs/cm2 and 705 ergs/cm2 for Cu and Fe, 
respectively). 

In the more general case, no twinning 
orientation is present, the two grains of 
identical structure and composition are 
randomly oriented with respect to one an- 
other. The usually consequent high-angle 
grain boundary has still higher energies 
(600 ergs/cm2 for Cu and 850 ergs/cm2 
for Fe). 

The interface between two binary phases 
which differ both in composition and struc- 
ture has a surface energy term which is diffi- 
cult to calculate a priori for a number of 
reasons. Swalin (9) points out, however, 
that the measured interfacial free energies 
for such systems are about the same as those 
for a high-angle grain boundary between 
two grains of one of the phases, i.e., a 
boundary between two randomly oriented 
phases of identical structure and composi- 
tion. Some relevant data summarized by 
Swalin are shown in Table 2. 

For calculational purposes, it is of interest 
to consider a range of interfacial free ener- 
gies which may be characteristic of the 
different possible transition metal alloys. 
Two general features are useful in this 
regard : 

(a) In the simplest t’heory, the solid- 
vacuum interfacial free energy, 
AG”“, is proportional to the latent 
heat of sublimation, H,. 

(b) The internal boundary free en- 
ergy for high-angle grain bounda- 

ries (and thus also for boundaries 
separating two different crystal 
phases, Table 2) is roughly one- 
third of the solid-gas interfacial 
energy: AGb/AG”” z 1,~. 

(For most boundaries, the derivative 
S(AG~)/SI~ is small if the angle of twist or 
tilt, etc., between the two adjoining struc- 
tures is fairly large (high-angle case). For 
such cases, internal boundary free energies 
are not strongly dependent on the exact 
relative phase orientations.) 

The refractory transition metals have 
heats of sublimation on the order of twice 
those of the iron and copper: e.g., in kcal 
per mole, Nb(185), Mo(155), Ta(185), 
W(202), Re(189) vs Fe(99) and Cu(81). 
The two previous guidelines suggest that 
about 1200 ergs/cm2 is a reasonable grain- 
boundary value for AGb between two dif- 
ferent phases of a refractory metal alloy. 

The values for the interfacial free energy 
of the phase boundary in Fig. 2b were 
taken as 0, 300, 600, and 1200 ergs/cm2 to 
be used in Eq. (12). These values may be 
crudely associated with an infinite particle 
(radius going to infinity), a twin non- 
coherent boundary, and a high-angle grain 
boundary for Group VIII and refractory 
metals, respectively. 

The solution of Eq. (14) under various 
assumed values for internal boundary free 
energy and particle radius results in im- 
portant shifts of the T vs z0 curve defined 
by Eq. (14) for which the total free-energy 

TABLE 2 
IZEL.\TIW: INTICRFACF: FHEE ENKRGLFX (25) 

System 

Interface between 

Phase A Phase B 

Grain boundary 
used as a corn- 
parison inter- 

face, I) 
AGAB* 
AGnb T(T) 

Cu-Zna 

C&Ala 

Fe-0 

WfCC @-bee 

a-fee fl-bee 
a-fee r-complex cubic 
a-bee Fe& 
a-bee y-fee 

fflff 0.78 700 

SIB 1.00 700 
a/cl 0.71 600 
r:r 0.78 600 

OIIff 0.93 690 

da 0.71 750 

n C. S. Smith, Trans. AIME 175, 15 (1948). 
6 Ref. (26). 
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change is zero. Within relatively minor 
variations of l-2 at. %, the final compo- 
sitions 1 and 2 into which the phase 0 could 
separate were found to be independent of 
these two variables of surface tension and 
radius. In t,he following diagrams, the T 
vs x0 curves for finite surface tension and 
finite radius are the highest temperatures 
at which the crystallite of radius r and sur- 
face tension u will begin to be unstable with 
respect to formation of a two-phase par- 
ticle. When decomposition is predicted, the 
composition of the resulting phases 1 and 2 
is essentially that expected for the same 
temperat,ure using the T vs z. curve for 
the bulk alloy (infinite radius or vanishing 
surface tension, curve 1 in Figs. 3,4, and 5). 

The effect of interfacial free energy on 
the solution of Eq. (14) (or, equivalently, 
Eq. (12) when Ag equals zero) is shown in 
Figs. 3 and 4 for radii of 1000 and 5Ok. 
There is a noticeable effect on the T - x0 
curves even for the large (2000 A) crystal- 
lite, and a drastic effect for the smaller 
(100 A) particle case even with a relatively 
low internal boundary free energy of 300 

1500 

700 - 

600 - 600 

500 500 

400 
""OW 1.0 

x0 - 

FIG. 3. Effect of internal boundary free energy FIG. 4. Effect of internal boundary free energy 
on the phase diagram of a regular binary solu- on the phase diagram of a regular binary solu- 
tion (T, = 15OO”K), crystallite diameter = 2000 B. tion (T, = 15OO”K), crystallite diameter =2ooO li. 

ergs/cm2. If the maximum interfacial en- 
ergy value of 1200 ergs/cm2 is assumed, 
the minimum t,emperature to which an 
equimolar 100-A crystallite can cool with- 
out phase separation is nearly halved, 
being cut from 1500°K (arbitrarily as- 
sumed critical temperature for the bulk 
alloy) to 790°K. 

Fixing the interfacial energy and varying 
the particle diameter results in the T - x,, 
curves shown in Fig. 5. Again the influence 
of particle size becomes pronounced for 
particles with radii of 100 A or less. 

The curves in Figs. 3, 4, and 5 are easily 
scaled to other temperatures. For a regular 
solution in an infinite particle (topmost 
curves, in Figs. 3, 4, and 5), the maximum 
temperature associated with the miscibility 
gap occurs at x: = 0.5. This critical tem- 
perature, T,, is equal to fi2/2R, where Q is 
the interaction parameter in Eq. (1), and 
R is the gas constant. Thus a = 2RT,, 
and the three parameters T,, T, and surface 
tension u can all be scaled together (as is 
seen in Eq. (12) ). For example, if T, = 

1500 

1400 

1300 

1200 

AG*(ergs/cm’) = O(I), 3OO(II), 6OO(III), 12OO(IV). AG*(ergs/cm*) = O(I), 300(11), 600(111), 12OO(IV). 
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1500 

1400 

1300 

1200 

L 
1100 

g 1000 

z 
2 w 900 
rz 
zs 

r 800 

700 

600 

FIG. 5. Effect of crystallite diameter on phase 
diagram of regular solution (T, = 156WK, AG’= 
606 ergs/cm’). d(A) = co (I), 2060 Ip(II), 200 
K(III), 100 A(IV). 

750°K (as is roughly true for Cu-Ni alloys) 
and the surface tension is about 600 
ergs/cm2 (a high-angle grain boundary 
for Cu), curves I and IV in Fig. 4 indicate 
that the change in temperature at which 
an equimolar loo-II-diameter crystallite 
should undergo a phase transition is 
1/2(710”K) = 355°K. The resulting “criti- 
cal temperature” for the crystallite is 
750 - 355 = 395°K or 122°C. Where an 
equilibrated bulk sample of this alloy at 
425’K would exhibit phase immiscibility 
over more than 90% of the composition 
range, a loo-A-diameter particle with the 
assumed internal boundary free energy of 
600 ergs/cm* would remain a single phase 
regardless of its average composition. 

If now an evaporated film of such crys- 
tallites is prepared and studied at 150°C in 
such a manner as to avoid major sintering, 
a completely homogeneous series of alloy 
catalysts could be obtained for this system, 
despite the fact that the components are 
nearly totally immiscible in bulk samples 
at this temperature. 

Simplifying Assumptions 

The relation of the results summarized 
in Figs. 3, 4, and 5 to real systems may be 
discussed by considering three items: the 
shape of the interface, the thickness of the 
interface, and the applicability of the regu- 
lar solution model. 

Interfacial boundary geometry: The 
assumption of a flat boundary between 
the two phases in Fig. 2b is strictly a cal- 
culational convenience. If phase 1 or 2 is a 
small fraction of the original phase 0 pres- 
ent initially (y near 0 or 1 in Eq. (6) ) , a 
curved boundary something of the order of 
ellipsoidal or spherical would perhaps be 
more likely. (The governing considerations 
which would determine the shape when y 
is near one or zero are exactly analogous 
to those governing the shape of coherent 
and incoherent embryos in nucleation in 
solids: the elastic properties of each phase, 
the variation in surface tension with com- 
position and orientation, and the lattice 
disregistry between the two phases (10) .) 
However, near y = 0.5, a flat boundary is 
the expected minimum energy form, assum- 
ing that the gas-solid surface tensions in 
Figs. 2a and 2b are identical. Since our 
primary concern is in obtaining one-phase 
crystallites for all compositions, it is the 
determination of the solution of Eq. (14) 
near y = 0.5 which is crucial. In this re- 
spect, a flat interface is justifiably 
assumed. 

A balancing of surface tensions and in- 
ternal boundary tension would yield a small 
groove around the external particle surface, 
thus slightly increasing the external sur- 
face area and decreasing the internal sur- 
face area. Even for ub + $&P’, the angle (Y 
measuring the deviation from a straight line 
of the joining 1 and 2 surfaces is only 
about 9”: 

ob = 2(sin (Y) u8” 
1 

sin a! = - 6 
*: a ‘v 9.2” 

The angle change is a small one and proba- 
bly results in only a small change in the 
T - x,, curves since surface of A@” values 
three times or more that of AGb must be 
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created at the groove in order to reduce 
the internal boundary area, A. 

Thickness of interface. The interface be- 
tween the (assumed) homogeneous phases 
is necessarily of some finite thickness in 
contrast to the interface of negligible vol- 
ume assumed in Eq. (12). Cahn and 
Hilliard (11-15) have treated such finite 
interface systems extensively by drawing on 
analogous phenomena in interfaces sepa- 
rating domains of magnetic (14) or ferro- 
electric (15) materials. Since the use of 
experimental surface free energies in the 
present paper will automatically include 
both “surface” and ‘%olume” contributions 
associated with a finite interface, this inter- 
facial volume should have been subtracted 
from the initial volume prior to calculation 
of the volume free-energy contributions 
from phases 1 and 2. As such a correction 
would decrease the total, negative, free- 
energy change favoring formation of a 
two-phase system, the results in Figs. 3-5 
are conservat,ive in this regard. Inclusion of 
a finite interface in the preceding calcula- 
tions would simply amplify the predicted 
differences for the different cases. 

Regular solution assumption : Equations 
(1) and (2) represent a simple model of a 
binary system exhibiting the one feature 
of interest,, a miscibility gap in the solid 
region. The author does not feel that in- 
clusion of strain considerations and various 
more realistic excess enthalpy and entropy 
of mixing terms would seriously change the 
qualitative predictions of the previous 
discussion. 

Application to Catalysis 

The predictions evolved from the regular 
solution model may bear on our under- 
standing of catalysis at surfaces only inso- 
far as the following two points may be 
answered affirmatively : 

(1) Are there real systems known to 
exhibit the effects predicted above? 

(2) Is the surface composition related 
in a known manner to the (local) bulk 
composition? 

These questions are now considered in light 

of some thin-film and field-ion-microscope 
studies of this last decade. 

1. Real Systems 

Kneller (16) was able to produce meta- 
stable solid solutions of Fe-Cu and Co-Cu 
by simultaneous vapor deposition of both 
metals on a cool substrate. These alloys 
exhibited single-phase behavior at room 
temperature ; subsequent heating yielded 
decomposition into two phases. A number 
of single-phased-metastable binary sys- 
tems have been produced by Mader (17) 
via deposition onto an 80°K substrate, fol- 
lowed by heating. He found that, when the 
ratio of the larger to smaller metal diame- 
ter exceeded e1.1, an amorphous structure 
was often formed. Heating the amorphous 
structure yielded changes at two tcmpera- 
tures, T, and T2. At T,, crystallization into 
a single homogeneous phase was observed. 
At T,( > T,), the single-phase system de- 
composed into two phases as expected from 
the equilibrium diagram for the bulk sys- 
tem. A summary of some binary metal pairs 
possessing bulk-phase diagrams indicating a 
miscibility gap and also yielding such 
metastable single-phase alloys at, modest 
temperatures is given in Table 3 (17). 

A central observation by Mader (IQ) 
arose from a beautiful study of Co + 38 
at. s Au codeposited at 80°K. In the 
temperature “range where the crystalline 
metastable phase exists . .“, “The most 
conspicuous change in this metastable 
phase is grain growth. Microscopic obser- 
vations indicate that the average grain size 
increases from about 20 to several hundred 
angstroms in the temperature range be- 
tween the two annealing stages” (19). Thus 
the single-phase first appears at tempera- 
t,ure NT, with crystallites of the order of 
20 k in diameter. These crystallites grow 
and coalesce into larger crystallites until, 
at a size of “several hundred angstroms” 
and a temperature of T,, decomposition 
into two phases occurs. 

The single-phased systems observed by 
Mader et al. (17, 19) and also by Chopra 
(90) have been termed metastable by these 
investigators and have been explained as 
due to a short-range ordering prior to the 
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TABLE 3 
APPROXIMATE COMPOSITION RANGES AND FIRST AND SECOND CRYSTBLLIZATION TEMPER.~TURES 

(T, AND Tz, RESPECTIVELY) FOR SINGLE-PHASE METASTABLE AND AMORPHOUS ALLOYS 
OF SOME SYSTEMS CODEPOSITED AT 80”Ka 

Percentage of 
Percentage of composi- composition 

tion range yielding range yielding 
Atom-size metastable (fee) amorphous films 

ratio single-phase films at at deposition 
System A-B TBITA deposition temperature temperature T1, “K TI/T,~ TJT,” 

co-cu 1.02 100 No 
Co-Au 1.11 <25 (both) >25 (both) 
Cu-Au 1.12 100 (disordered) No 
Cu-Ag 1.13 <37 (both) >37 (both) 
Co-Ag 1.15 No 100 
Cu-Sn 1.18 >30 
Cu-Mg 1.25 <18 Cu(fcc) >18 cu 

< 10 Mg(hcp) >lO Mg 
Fe-Auc 1.11 20-60 Au 
Gd-Au< 1.13 50-80 Gd 

a Summarized by Chopra, “Thin-Film Phenomena” (.%I). 
b T, refers to the average of the melting points of the components. 

0.45 
-430 0.36 

-370 0.28 0.38 
-180 0.12 0.24 
-150 0.1 
-400 0.35 

-200 0.13 
-480 0.3 

c S. Mader, unpublished results. 

activated decomposition step occurring at 
the higher temperature T,. In light of the 
regular solution model discussed in the text 
of the present paper, it seems reasonable 
to expect that (1) the 20-A particles are 
single phase because that is the equilibrium 
configuration for such small crystallites at 
temperature T, as is suggested from Figs. 
4 and 5, and (2) in the absence of further 
sintering and grain growth, these small 
“metastable” particles are not metastable 
at all: they are the equilibrium state of 
62% Cu/38% Au in an 220-A state of 
subdivision. The present theory thus ap- 
pears to satisfactorily explain the behavior 
of the “metastable” systems in Table 3 or, 
conversely, these real binary pairs seem 
indeed to exhibit the predicted effects 
shown in Figs. 3, 4, and 5. 

2. Surface us Bulk Composition 

The fundamental problem is to measure 
the surface composition for an alloy of 
known bulk composition without resorting 
to calibration by the very process one 
wishes eventually to understand: chemi- 
sorption on an alloy surface. Field-ion 
microscopy seems to provide some infor- 

mation, but further progress via such in- 
dependent techniques will be difficult. Field 
evaporation of surface atoms from fully 
ordered sample tips of PtCo (Mueller 
(,%?I)), P&Co (Tsong and Mueller (26))? 
and Ni,Mo (Newman and Hren (23)) 
yields surfaces with composition simply 
that expected by cutting a sphere from a 
solid, perfectly ordered sample. Random 
or uniformly disordered alloy solutions do 
not appear to develop crystallographically 
perfect planes; at the present time, it is not 
known whether this fact is associated with 
the field-evaporation technique, or, more 
interestingly, with surfaces of random or 
disordered alloys in general. As a conse- 
quence, FIM techniques have not, yielded 
surface compositions of such samples. 

More research in this area relating sur- 
face and bulk compositions is clearly in 
order. 

CONCLUSION 

The present paper has predicted that a 
binary regular solution system can poten- 
tially be made to remain in one single phase 
at temperatures well below the critical 
temperature for bulk samples by produc- 
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ing the alloy sample as very small crys- 
tallites (less than 100-A radius). Certain 
experimental observations by Mader in 
particular seem to strongly support the 
predictions of the simple regular solution 
model developed in the present paper (al- 
t’hough his alloys are not perfect regular 
solutions). These observations furt.her sug- 
gest an appropriate experimental approach 
to be used in future alloy work, viz., co- 
deposition on cooled surfaces in vacua as 
practiced by both Mader (17, 19) and 
Sachtler (S-5, 24). 

The availability of such uniform samples 
over the full range of composition would 
clearly offer the potential of finally achiev- 
ing an understanding of the electronic 
factor in catalysis by metals. 
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